
PMM U.S.S.R.,Vo1.4?,No.2,pp.244-252,1984 
Printed in Great Britain 

ON MOTION STABILITY RELATIVE TO A PART OF THE VARIABLES 

UNDER PERSISTENT PERTURBATIONS* 

V.I. VOROTNIKOV 

The problem of stability and asymptotic stability of motion relative to a part of 
the variables under persistent perturbations is examined for the case when some of 
the latter may not be sufficiently small. Stability theorems of such kind are 
proved. A unified method based on a nonlinear change of variables and on differen- 
tial inequalities is used to derive stability conditions for the motion of a solid 
body with one fixed point under persistent perturbations. 

It is well known that the problem of motion stability relative to a part of the variables 
(v-stability) for linear systemsisequivalent to the problem of Liapunov stabilityofmotion 
for a certain auxiliary linear system whose dimension can be less than that of the original 
system. In the present paper a connection is established between the coefficients of the 
auxiliary system's characteristic equation and the coefficients of the originallinearsystem. 
This permits a formulation of an algebraic criterion for the asymptotic y-stabilityoflinear 
stationary systems, of algebraic conditions for complete controllability with respect to a 
part of the variables of a linear stationary controlled system, as well as of an analog of 
Popov's criterion yielding conditions of absolute y-stability of the motion of nonlinear con- 
trollable systems. 

1. Let there be a linear stationary system of ordinary differential equations of perturb- 
ed motion 

z' = AZ; z = (y,, . . ., y,, z,, . . ., zp) = (Yv 2)~ m>O, P>O, rc=m+p 

or, in the variables y, 2 

y' = A y + Bz, z’ = Cy + Dz (1.1: 

where A, B, C, D are constant matrices of appropriate dimensions. Together with system (1.1; 
we consider the "perturbed" system 

y' = Ay + Bz -i- R, (t, y. z), 2’ = CY -i- Dz + Rz (t, Y, z) (1.2) 

where the vector-valued functions R,, R, are persistent perturbations that are such that 
system (1.2) has a solution corresponding to each collection of initial data r01 t,. The com- 

ponents comprising the vector z and the vector-valued function R, we divide into two groups 
and we represent z and R, as z=(z*, z-), RZ = (R,', R,-). 

Definition 1. The motion x = 0 of system (1.1) is called y(z-)-stable if for any 

number E >O we can find positive numbers IS~(~) (i = 1,2), such that the inequality 

t .;- 0. II y (C 10, x0) II < &, 0 < I( z (C t,, x0) /I < + 00 (1.3! 

is fulfilled on all motions ofsystem (1.2) starting in domain 

II Yo II < 6, (EL II %I+ II -c 6, (El, tJ < II zo- II < + O” (i-4) 

for any values R(t, y, z) satisfying the conditions 

11 R, (t, Y, 4 I( -C 6, (e), II R,+(L Y, 4 II <b (4, (1.5) 

0 < 1 Rx- (t, Y, 2) II < + m 

in domain (1.3). If, in addition lim BY (f; to, Xa) 11 =O, t-+ 00. then the motion x =O of system 
(1.1) is called asymptotically Y(Z-)-stable. 

Notes. lo. If the vector z- in (1.4) and the vector-valued function R-,~n (1.5), re- 
spectively, the conditions ~]ro-l<&(e) and B RI- (t. Y. 1) II < 8, (8). then we shall say that the 
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motion Z= 0 of system (1.1) is Y(o)-stable. When m = n the definition of y (O)-stability 

leads to the well-known definition of stability under persistent perturbations /l/, and when 
&GO, R,=O to the definition of Y-stability /2/. 

2O. The definition of Y(n-)-stability makes sense only when m<n. Indeed, the presence 

in the system of perturbing factors arbitrary in magnitude leads to system (1.2) having equil- 
ibrium positions arbitrary in magnitude and, consequently, the problem of z(z-)-stability 

makes no sense. 
30. The definition of asymptotic Y(z-)-stability and even of asymptotic Y (O)-stability 

makes sense only when m<n according to /l/. 
Consider the matrices 

K, = (BT, DT, BT, . . ., D=p-‘BT) 

J&n 0 

111 . . + 11, 

0 If&l . . . lf&, 

(1.6) 

(1.7) 

where E, is the unit mX m-matrix, of size (lil, . . ..l~.)~, i-1, . . -,h are linearly independent 
column-vectors of matrix &,, La is an arbitrary (n-m-h) X n -matrix such that the matrix 
L is nonsingular, h = rank K,; T is the sign of transposition. 

Theorem 1. Let the motion x = I) of system (1.1) be asymptotically y-stable. If in 
matrix K, the rows numbered il, _.., iN are zero, then this motion is y(z-)-stable and the 

variables zd and the functions R,, numbered s = i,,..., iN, respectively, occur in the vector 
z- and in the vector-valued function R,- 

Proof. In system (1.1) we make the change of variables E = Lz, where matrix Lis of 
form (1.7). In the new variables the equations of system (l-l), according to /3,4/, fall into 
two groups: 

w' F Alw, d = A,w + A,v, E = (w, v) 

and the (m+h)-dimensional vector w describing the state of the system 

w' = A,w (1.8) 

completely determines the behavior of the variables Y = (yl, ~ .., y,) of system (1.1). Together 
with (1.8) let us consider the system 

w’- A,w + LIR, R = (R,, Rz) 

According to /3/ the motion W= 8 of system (1.8) is asymptotically Liapunov stable;there- 
fore /l/, it is stable with respect to all variables under the persistent small perturbations 

LIR. But the function L,R does not contain the perturbations R,,, S= iI,..., iN; therefore, 
the motion 5 = 0 of system (1.1) is y(z-)-stable, and the variables z, and the functions H,, 
numbered S = &, -. -, iN,respectively, occur in the vector z- and in the vector-valued function 
R- L. The theorem is proved. 

Corollary. If the motion x = 0 of system 11.1) is asymptotically y-stable, then it 
is y (0)-stable. 

Example 1. Let the Eqs.cl.1) of perturbed motion be 

Y,' = -Y, + 21 - 8, (1.9) 
'1' = 4Y, + zl+ h, 21' = BY, + % + 4% 

%I' = 2Yl + 21 + 22 - 2, 
B = (i, 0, -2) 

1 
, rsnkKt=i, K1s 

u E 

0 

-2 
In this case the equations 

w’= A,w, A, 4-b -:I1 
comprise system (1.8). The eigenvalues of matrix A, have negative real parts and the second 
row of matrix K, is zero; therefore , according to Theorem 1, the motion yl=zl=zI=zs = 0 of 
system (1.9) is yl (z-) -stable, and f = z*, R-, = R,. Thus, the unperturbed motion of system 
(1.9) is Y~-stable for any perturbing function R, 
turbing functions Rv,,Rz,, R,, 

acting on the third equation and for per- 
sufficiently small in magnitude, 

tions of this system. 
acting on the other three equa- 
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Example 2. Let us consider the equations of perturbed motion of a controllable system 
in the critical case of two zero roots 

:1.10: 

where aik, hi, ak, ?I, yI, PI, B2, y. are constants, f(u) is a continuous function satisfying the con- 
dition of (u)> 0, D # 0. We introduce the new variables /5/ Yrl= B1zl + 8~ I where Y<O is a 
constant number. System (1.10) reduces to 

Yi’ = fg DikYk + f+f @I* i=l,...,m 
(1.11) 

k-1 
m 

The well-known conditions for the global stability of the unperturbed motion of system (1.11) 
/6/ will be, according to /S/, sufficient conditions for the global y-stability of the un- 
perturbed motion of system (1.10) for any finite number Yo* because the quantity YpiY can be 
made sufficiently small by making a suitable choice of the quantitiy Y. 

2. Let the vector-valued functions R, and R, in system (1.2) be 

R, = R,, + Ry* (t, y, z), Rz = Rm + 
R,* (t, y, z), R = (R,, RA, R* = WV*, &*). 

where R,, and R,, are constant vectors of appropriate dimensions. We assume that rank& = h 
and by 1, (s = 1, _ . ., h) we denote linearly-independent column-vectors of matrix K,. Without 
loss of generality we shall take it that all column-vectors of matrix BT are linearly indepen- 
dent. We consider the system of algebraic equations for determining hi1 (i, j = 1, . ., h) 

D’li = i: hijlj, i=l ,...> h 
j=l 

We assume that 

LjTR,, E ksIhjkRgor f , $+,~jt&. ix ‘7 * . * I h 

IR,*(t,y,z)I~k~~afkIblfkII i=17”‘Tn 

where alk are sufficiently small positive constants. 

(2.1) 

(2.2) 

Theorem 2. If the motion z = 0 of system (1.1) is asymptotically y-stable, then this 
motion will be asymptotically y(O)-stable under any sufficiently small perturbations R,,, lTjRzo 

(j = 1, . . ., h) satisfying conditions (2.1) and any perturbations R” (t, y, z) satisfying 
conditions (2.2). If, additionally, the rows numbered il,...,iN in matrix K, are zero, then 

this motion is asymptotically y(z-)-stable, and the variables z, and the functions R,, with 

numbers s = it, . . ., iN occur in, respectively, the vector z- and the vector-valued function R,-. 

Proof. In view of condition (2.1), after the introduction of the new variables 

the system 

pi=lirzr+ R,oi, i=l,...,m (2.3) 

p,+j=lZ+sT+ G+j&> j=l,...,h 

y’=Ay+Bz+Rv,, z’=Cy+Dz+Rz, (2.4) 

reduces to 

11' = Alrl (2.5) 

where q = (y, II) and p is a h-dimensional vector consisting of the variables (2.3). The 
reduction of system (2.4) to form (2.5) is similar to the way in which in /3,4/ with R, = 0 

the system (1.1) was reduced to a system of p-form (1.8). The eigenvalues of matrix A, have 
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negative real parts and, consequently, the motion q =O of system (2.5) are asymptotically 

Liapunov-stable. 
According to /7/, when (2.2) is fulfilled the motion q = 0,~ = 0 ofthenonlinearsystem 

3' = &l -t &R* (t, 3, 2' = Cy + Dz -j- R,* (t, z) 

is asymptotically g-stable. Consequently, for any e>O, t,>O we can find h(e, to)>0 such 
that from \\Q, 11 <I, I/z0 1) <A. follows IIq((t; &J, qo,z,)ll<a for all t> t, and, in addition, 

Km II q (t; to, no, zo) II ===,", as t* O". 
With respect to h and t, we can choose 6*(h, t,)=Si(s,to) > 

O(i = 1.2) such from II 50 II C 61, II RyO II c 6,. 11 V’R,, II -C 6, (j = 1, . _ ., h) follows 

II rl (t; to, 501 II < h. Then for all t > to we have II II (G to,soj II c s and, in addition, lim II I (t; 

to, x0) 11 = 0 as t- O". The theorem has been proved. 

Example 3. Let the equations of perturbed motion (1.1) be of form 

Since ~~~~ = -I~, condition (2.1) in the case given becomes 

R 
ZXO 

- 2R,= -R,, 

After the introduction of the new variable pl= zI -~z,+R~,~ the system 

yl' L5: -Yl + 21 - 22, + R,,, ~1. = 4~1 -I- 21 -t R,, 
zz' = Zy, + 21 - 2% + Rid) 

(2.6) 

(2.7) 

becomes 
Yl’ = --Y1 + PI, PI. = --PI 

Therefore, with the fulfillment of conditions (2.2) the unperturbed motion of system (2.6) is 
asymptotically srl(0)-stable in accord with Theorem 2.1. 

3. We consider the motion of a heavy body with one fixed point, due to initial and to 
persistent perturbations. The equationsofperturbed motion are 

As,' = (B - C) sz% 4 mg(r*o% - Z*oVs) + AR (k 511 % %I (3.1) 

Y1' = ssy, - ;znYS (123, ABC) 

where A, B, C are the body's principle moments of inertia, xi(i=I,2, 3) are the projections 
of the body's angular velocity onto the principal axes of inertia, yt(i = 1,2,3) are the pro- 
jections onto the principal axes of inertia of the unit vector directed alongthe fixedvertical 
axis, .~,(i = 1,2,3) are the coordinates of the body's center of inertia in the principleaxes 
of inertia, @,(t,x,,x,,s,)(i = 1,2,3) are the continuous persistent perturbations,@,,(t, O,O,O)= 
0 (i = 1, 2, 3). We shall study the stability of the unperturbed motion of system (3.1.) under 
a number of assumptions on the form of the functions aD1 (i = I, 2, 3). 

lo . ml (t, xI, tl, XJ = aizir a* = const, xio(i = 1,2, 3), i.e., system (3.1) has the form 

As’ = a,~ -j- (B - C)x~.q(123, ABC) (3.2) 

We introduce the new variable p1 = (B - C)zp JA. Under the condition C< A (B or C> 
A>B we have the following estimations for system (3.2): 

a) x1* = a1r1 -k ,ul 

in the domain 

O~xtl~H, O< IZi I< + OJ (i = 2,3) (3.3) 

b) x1' = a91 + PI9 ~~'2 (aa + a8)pI in the danain 

--H<~s,<0, O,<l~il<+~ (i=2,3) (3.4) 

From the estimations a) and b) it follows that the variable x1(t) in system (3.2) is described 
by the equation 

x1' = alzl f V (tit I rp (Q I B x2 (to) x1 (to) exp (az + a,) t 

therefore, under the condition 
is asymptotically globally 

a,<O, az+a,<O the motionx,=~~I;x,=O of system (3.2) 
x,-stable. If a, =O,al+a,(O or 

from estimations 
a,< O,a, + a, = 0, then 

al and b) follows the x,-stability of the motion x1 = 52 = XQ = 0. 
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Theorem 3. Let one of the three conditions 

C<A <B, B<A<C, A=B#C 13.5) 

be fulfilled. If a,< 0, a2 +a,<O, then the motion x1 =x2=x3 = 0 of system (3.2) is 
globally asymptotically x,-stable. If R<o,a,+a,=O or al=O, a,+as(O, then UIJ_s 
motion is (nonasymptotically) 51 -stable, 

2O. @I (& x1,x2, x.) = af (tfxi. af (t) 
System (3.1) has the form 

is piecewise continuous functions t, xi0 = 0 (i = 1.23). 

AxI’ = ccl (t)x, -+(B - C) .QX, (123, ABC) (3.6) 

Under the condition C<A<B or C>A> B F for system (3.6) we have the estimations 

zl' = a, (tk -I- ~1, b'< I%. (1) + ES (t)Jpx in domain (3.3) 

xl' = aI (t)x~ -i- IL17 PI' 2 [G(t) -k cs (t)J pi in domain (3.4) 
Therefore, the varieble x1(t) in system (3.6) is described by the equation 

x1’ = rl (6) xl + qb (0, 

rl (t) = al (4, r3 TV) = a3 (7) + a3 (9 
and, consequently, the inequality 

(3.7) 

is fulfilled. 

Theorem 4. Let one of the three conditions (3.5) be fulfilled. If 

then the motion x1 =x* = xr) = 0 of system (3.6) is globally asymptotically x1-stable. 
The proof follows Ercnn inequality (3.7). 
30 . @(t, x1, xal xs) = fl (x1), where jz(xl) is a continuous function in the domain I x1 j < 

H; @t (b 211 5, h) = ai% ai = const (i = 2, 3); xi,, = 0 (I = 1, 2, 3). System (3.11 has the form 

B-C 
z1~=~fr(z1) + 7 35Z3t X8’ = capa + 9~ ze?, (3.8) 

A-B 
z3'=a3x3 + 7 xlxa 

Under condition C<A<B or C>A>B we have the estimates 

x1 * = ft(zI) + pt, pt' = (aa i-ad plin danain (3.3) (3.9) 

x1' = f1(a) + 1119 pl' = (aa + aS) pIin domain 0.4) 

for system (3.8). Let us consider the system 

5~' = fl (Ed 4 &, f,' = (a2 -I- a4 8% (3.101 

which is the comparison system for (3.9). 

Theorem 5. Let one of the following two conditions be EuLfilledtC < A <B or C> A > 
B. If (6 + at) fl (t)E1> 0, fl &)& + (Cxo -+-US) CO& #O) 

[Qtfcla)h(L)&-+m. IE~l-+-OO 

then the motion x1 =x2 =x3=0 of system (3.8) is globally asymptotically x,-stable. 

Proof. Under the fulfillment of the theorem's conditions the motion Et = &= Oofsystem 
(3.10) is globally asymptotically Liapunov-stable /8/; therefore, according to /9,10/, the 
motion x1 = 2, = xs = 0 of system (3.8) is globally asymptotically xl-stable. The theorem 

is proved. 
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We consider the case a, + a% = 0. Then the behavior of the variable x,(t) in system (3.8) 
is determined, in view of estimations (3.9), by the equation 

x1' = fl (xx) + (P2 0), I rp, 0) I < 5.2 (GJ x3 (GJ 

According to-the theorem on stability of motion under persistent perturbations /l/, the ques- 
tion of the x,-stability of the motion x1=x~=xa -0 of system (3.8) reduces to the question 
of the asymptotic Liapunov-stability of the motion 8 = 0 of the system F = k(E). 

40. cP,(& x1, 52, X8) = f1 (x1); @'i (t, x1, x2, 53) = fi (x,, xs) (i = 2, 3); 510 = 0; fi (d = 1, 2, 3) 

are functions in domain Ix*I<H(i=1,2,3), continous in all variables. System (3.1) has 
the form 

Ax; = il.(q) i(B - C)Z$t, (123 ABC) (3.11) 

Under the condition Cs<A<B or C>A>B we have the estimates 

(3.12) 

for system (3.11). Assume that 

xzfs + %fz = 9 (111) 

where +(pJ is a continuous function in domain 1 pi ) fH. 

Theorem 6. If the motion %I = %z = 0 of system 

El'= fl (%I) + Es, E; =$ (E3 

(3.13) 

is globally asymptotically Liapunov-stable, then the motion x1 E ;tz = zQ = 0 of system (3.11 
is globally asymptotically xl -stable. 

The proof follows from (3.12), (3.13) and the results in /9,10/. 
50. @I (t,xl. x2, x8) = CC~X;, ai = const(1 = 1, 2, 3); RIO = zao = 0, $80 PO, A = B jc, C. 

Theorem 7. If conditions a, 40, a,<O, a2 + a*< 0 are fulfilled, the motions, = 5% L= 
x3 = y1 = yz = ys = 0 of system (3.1) is(xl, xs, yl, 72, y*) -stable. 

Proof. Under the assumptions made the estimates 

pL1' < (az 4 a3 PI - %(t) in domafn(3.3) 

rI'> (a% +t- al) PI - 'pI (t)in domain (3.4) 

( cps@)= 
+rng.r~0yl. q4(3= - $@ mgx30w3 

! 

are valid for system (3.1). In view of the presence of the first integral y1s + 72 -f ys2= 1 
for system (3.1), its unperturbed motion is (yl, yz, y&-stable. Since a,<O, for any e) 
0, to > 0 we can find 6(~,t~) >0 such that from Ixi (&)I< 6, 1 yi (to) 1~6 (t = I, 2, 3) follows 
1 cDi (t) 1 (E (i = 3, 4) for all t > to. Consequently, the motion %, = %*=O of system 

El' = ad1 + fzr %i = (aa -i- a3 %a 
is stable under small constant perturbations 
tion x,=X2=X9=y~==yI=ys=0 of 

vi(t) (i = 3,4)and, according to /9,10/, the mo- 
system (3.1) is (x1, xg, yI, yn, yl)-stable. The theorem 

is proved. 

In conclusion let us show that the x,-stability of the unperturbed motion of system (3.11, 
proved in paragraphs lo- So, is a more general concept than the 
Rumiantsev in /2/. 

XI-stability defined by 
Indeed, in paragraphs lo- So it was shown that for any number E>O we 

can find a positive number 6 (s) >o such that from 

I II Go) I -= 6, I 5, f&J zs <to> I c 6 (3.14) 

x0 = (x1 (to), x2 (to), x5 Go)) 

follows IEx(t; to, x0) I( E for all t 2 to. The second inequality in (3.14) is possible when 

! 12 (to) I < 61, 1x0 (to) I < A 
or when 

1% @of I c 5, I z* (to) I < 6, 

where 61 is sufficiently small and A is some finite (not small) nmer. 
initial perturbations in the determination of the I, 

Consequently, the 
-stability of the unperturbed motion of 

system (3.1) need not be sufficiently small, as was assumed in /2/. 
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K, = h and we consider a matrix Q1(i = 1,. . ..<Y) 
of the following form: 

a) the rows of the size h x p-matrix Q1 are the linearly-independent column-vectors of 
matrix K,i 

b) the columns of the size h x h-matrix Q3 are the linearly-independent column-vectors 
of matrix Q1 (let these columns of matrix Q1 have the numbers i,, . . ..ih). 

c) the row numbered i,(s = I,..., h) of the size (n-m) X h -matrix Q3 in the row number- 
ed s of matrix Q3-l, while the remaining rows of matrix QIare zero; 

Qa-l is the matrix inverse to matrix Qz;~,,, is the unit size m X m-matrix. 

Theorem 4.1. For the asymptotic y-stability of the motion x = 0 of system (1.1) it 
is necessary and sufficient that all the roots of the equation 

I Qd* Qs -a&,+,~ = o (4.1) 

have negative real parts. 

Proof. According to /3/, the problem of the y-stability of motion for (1.1) is equival- 
ent to the Liapunov-stability problem for a certain auxiliary stationary linear system f'= Cc 
(we call it a system of p-form) of dimension m+h. Here the elements gij of matrix G are 
the elements numbered i,j = 1,. .., m + h of the matrix LA*L-’ in which L is of form (1.7). 
We denote the elements of matrix L-1 by {&} (i, j = 1, . . . . n). Since the columns numbered 

11, . . .,ih of matrix Q,, and thus also the columns numbered m + i, (s = 1, . ., h) of matrix L,, 
are linearly independent, matrix L can be represented in the form 

Em 0 
L= 0 QI, I I 0 L3 

and the columns numbered i,,..., ih in matrix L, can be taken to be zero, while the remaining 
elements of matrix L3 can be chosen such that 1 L 1 #O. We take into account that 

Zij-= [(- i)‘+jLji]/ 1 L 1 (i, j= 1, . . ., 78) 

where Lji is a minor of the determinantjL lof matrix L, obtained from IL J by the deletion of 
the .j th row and the ith column. In addition, permutations of the columns in a squarematric 
can change only the sign of its determinant, i.e., 

where k is the number of permutations made of the column-vectors in matrix L, and in matric- 

es L4 and L, there occur, respectively, only those columns of matrix Q1 that are not contained 
in Q3 and in the nonzero matrices L3_ We shall have 

LT.- 
1, i-j 

1) - 0, i Pi; i,j=l,...,m 

lij-=O (i=l,..., m; j=m+l,..., m+h) 

(i = m + i,, s 5 1, . . ., h; j = 1, . . ., m) 

(i = m + i,, s # 1, . . . , h; j = 1, . . . , m + h) 

Im+i,,m+k=[(-l)S+liQ3ks]/lQ31 (k,s=l,...,h) 

(&s is the minor of determinant 
sth column in IQA. Therefore, 

QG = II lij- 

IQ2 1 resulting from the deletion of the lc-th row and the 

11 (i=l,. .,n; j =I,. . .,m+h) 

and, consequently 

The theorem is proved. 
Q.4 *Q.i =I\gijI) (i, j=1,....,m+h) 
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Note. Equation (4.1) is the characteristic equation of the system of p-form equations 

introduced in /3/. Therefore, in Theorem (4.1), in contrast to the result in /3/, we have 

established a direct algorithmic connnection between the form of the coefficients in system 
(1.1) and the conditions for its y-stability. 

Example 4. Let system (1.1) be of form (2.6). In this case m= i and ~=2, while 

rank (BT, DTBT) = rank \I _;-$+I 

We set up the matrices &(l= 1,...,5) 

Equation (4.1) becomes 

1 Q,A*Q, --l&I = (h+ 4)*= 6 (4.2) 

The roots of Eq.(4.2) are negative; therefore, the motion yl= zl= zZ= 0 of system (2.6) is 

asymptotically y,-stable. 

5. Let us obtain sufficient conditions for the complete controllability with respect to 
a part of the variables (complete y-controllability /4,11/j for the linear controlled system 

x'= A*x + B*u; x = (l/l> . . .v Ym, 217 . . .t zp) = (5.1) 

(Y, z), m>O,p>O,n=m+p~ 

in which x is the system's of n-dimensional state vector; u = (u,, . . . . u,) is the r-dimension- 

al control vector; A*, B* are constant matrices of appropriate dimensions. 

Theorem 5.1. If 

rank (Q$*, QpA*Q,Q,B*, . . ., (Q4A*Q,)m+h-‘QpB*) = m + h (5.2) 

then system (5.1) is ccanpletely y-controllable. 

Proof. In system (5.1) we make the change of variables 3 = Lg, 5 = (y, z). According 
to Theorem (4.1) the behavior of the variables occurring in vector 3,is described by the equa- 
tion 

3’ = Q,A*Q,3 + QP*u (5.3) 

Under the fulfillment of (5.2) system (5.3) is completely controllable /ll/ and, consequently, 
system (5.1) is completely y-controllable. The theorem is proved. 

6. Let us obtain sufficient conditions for the absolute y-stability /5/ for the non- 
linear controllable systems /6/ 

x' = A*x + bf (a), o = ex 

x = (Yl, . . .I Ym, Zl. . . .,z,) = (Y, 4, m >O 

p>O,n=m+p 

or, in variables y,z 

Y' = AY + Bz + bj (a), z' = Cy + Dz + b2f(u), 6 = e,Y + es (6.1) 

where f(o) is an arbitrary and continuous function satisfying the condition 0 < af (u) < I# , 
A, B, C, D, b,, b2, e,, ez are constant matrices and vectors of appropriate dimensions. We assume 
that 

rank (B*, DTB*, . .., DTp-lB*) = rank K,* = h 

where B* = II BT,ezT II , and by applying rules a)- e) from Sect.4, we construct matrices Qi*(i = 
1, . . .( 5). (Rules a)- e) from Sect.4 are fulfilled here with the sole difference that in a) 

we need to take the matrix K,*instead of KP). 

Theorem 6.1. Let a real number p (without loss of generality we can assume that q SO) 
exist such that the inequality 

4 + Re (1 + qio) W (iw) > 0 

(W (io) = (eQ5*)(Q4*A*QS* - iuG+h)Q1*b) 
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is fulfilled for all o 20 - Then the motion z = 0 of system (6.1) is absolutely y-stabie. 

Proof. As in Theorem (4.1) we can show that the equations 

5’ = Q4A*Q55 f Q4*bf (4, 0 = eQj* r; (6.2: 

are a system of p-form equations /5/ for (6.1), while the function W(h) is the frequency 
characteristic of the linear part of system (6.2). According to Popov's criterion /12/ and 
to the result in /5/, the motion z =O of system (6.1) is absolutely y-stable. The theorem 
is proved. 

The author thanks V.V. Rumiantsev and the participants of the seminar directed by him for 
discussions on the paper. 
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